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Motivation: Obtaining a joint embedding of structure & sequence 
from sequence alone

● Existing protein representation models often 
capture either p(sequence) or p(structure), 
limiting flexibility

● Desiderata:
○ Capture the joint embedding of sequence 

and structure
○ Can be explicitly decoded back to 

structure and sequence
○ Can be captured from sequence alone

Sequence
Backbone 
Structure

All-atom structure

All-atom structure is a superset of 
sequence information!
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Motivation: Sequence databases offer better data distribution 
coverage and function label abundance

● Structure databases have 
strong priors which may not 
always be useful:
○ biased towards 

crystallizable proteins
○ sequence database sizes 

approaches internet-scale 
data, while structure 
databases are much 
smaller
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Multimodal 
latent space

Structure

Sequence

Structure

Sequence

Conditioning Generation

Being able to characterize a joint latent space allows flexibly 
conditioning by and generating either modality.

Motivation: Directly capturing the joint distribution is flexible
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Generate a picture of an 
apple tree.

Generate a picture of tree 
branches.

Add apples to this tree 
branch.

Generate a picture of apples 
in midair.

Add branches to these apples.

Structure generation + 
inverse folding

Sequence generation + folding Co-generation

Motivation: Direct sampling from the joint distribution is natural
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Motivation: Large pretrained models capture useful priors for 
decision making

● Multimodal pretrained 
models offer useful priors
○ e.g. VLMs in robotics

→ can we use information 
captured by AlphaFold2, etc. 
as a “foundation model” for 
decision making in protein 
engineering?

RT-2: Vision-Language-Action Models Transfer Web Knowledge to 
Robotic Control

https://robotics-transformer2.github.io/
https://robotics-transformer2.github.io/
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How can we repurpose the joint 
representation of p(sequence, structure) in 

protein folding models for downstream 
tasks?
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Refresher: ESMFold for sequence-to-structure prediction

AlphaFold2: 

Uses an explicit 
retrieval step

harness additional 
sequence-based priors

learn structural features 
from sequence latents

generate structures
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Refresher: ESMFold for sequence-to-structure prediction

AlphaFold2: 

Uses an explicit 
retrieval step

ESMFold: 

Replaces retrieval 
step with a language 
model

harness additional 
sequence-based priors

learn structural features 
from sequence latents

generate structures
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Observation: at inference 
time, the pairwise input is 
initialized as zeros…
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→ LM embedding 
captures sufficient 
inductive biases for 
structure, but requires 
only sequence data 
during training!

harness additional 
sequence-based priors

learn structural features 
from sequence latents

generate structures

Observation: at 
inference time, the 
pairwise input is 
initialized as zeros…
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→ LM embedding 
captures sufficient 
inductive biases for 
structure, but requires 
only sequence data 
during training!

Observation: at 
inference time, the 
pairwise input is 
initialized as zeros…

Consider this latent space as a 
joint representation of protein 
sequence and structure that can 
be obtained from sequence only.
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an early attempt at diffusing in this latent space…

training: 
standard 

diffusion training 
from ESM2 

outputs

inference: 
generate new 

sequence 
representations, 

decode to 
sequence and 

structure

architecture: 
stacked triangle 
self-attention 
blocks, as 
introduced in 
AlphaFold, to 
capture pairwise 
interactions

triangle self-attention:

PLAID v0.5: Generating Protein Sequence and Structure Without Structural Training Data
Amy X. Lu, Kevin K. Yang, Pieter Abbeel
ICML 2024 Workshop on Machine Learning for Life and Material Sciences
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an early attempt at diffusing in this latent space…

We are able to learn structural folds, 
despite using only sequence inputs!

Empirically considering this latent space 
as a joint distribution is a go ✅

PLAID v0.5: Generating Protein Sequence and Structure Without Structural Training Data
Amy X. Lu, Kevin K. Yang, Pieter Abbeel
ICML 2024 Workshop on Machine Learning for Life and Material Sciences
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an early attempt at diffusing in this latent space…

pLDDT is fairly low. 
What’s preventing the 
model from learning?

PLAID v0.5: Generating Protein Sequence and Structure Without Structural Training Data
Amy X. Lu, Kevin K. Yang, Pieter Abbeel
ICML 2024 Workshop on Machine Learning for Life and Material Sciences
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Issues and hypotheses -> CHEAP

● Latent space requires regularization

High-Resolution Image Synthesis with Latent Diffusion Models

https://arxiv.org/pdf/2112.10752
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Issues and hypotheses -> CHEAP

● Latent space requires regularization
● Training data only allows for length of 128 

due to memory constraints
○ Some samples show the curvatures of a 

beta barrel, but sequence length limits 
seeing a full beta barrel
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■ Need to shorten the protein?
● pLDDT is not designed to assess generation 

from evolutionary scale datasets
○ Biased towards generative models trained 

on the same data as AF2, i.e. PDB
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Issues and hypotheses -> CHEAP

● Latent space requires regularization
● Training data only allows for length of 128 

due to memory constraints
○ Some samples show the curvatures of a 

beta barrel, but sequence length limits 
seeing a full beta barrel

■ Need to shorten the protein?
● pLDDT is not designed to assess generation 

from evolutionary scale datasets
○ Biased towards generative models trained 

on the same data as AF2, i.e. PDB
● Large latent space corresponds to 

high-resolution image generation
○ in LDMs, latent space is 64 x 4 x 4, as 

opposed to ours, which is 512 x 1024

Diffusion models in their naive formulation often fail 
for 1024 x 1024 resolution generation.
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A closer look at the latent space of ESMFold…

Magnitude

Channel 
dimension
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…ESMFold latent space exhibits pathologically large values

● Some channels exhibit very high mean 
values, regardless of the input.
○ Implications for generation: data 

distribution is no longer Gaussian 
distributed

Magnitude

Channel 
dimension
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● ESMFold contains massive 
activations: some channels 
exhibit very high mean values, 
regardless of the input.
○ Implications for 

generation: creates 
difficulties because data 
distribution is no longer 
Gaussian distributed

Not just an issue for this particular layer...

…ESMFold latent space exhibits pathologically large values
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ESMFold ESM2 latent space exhibits pathologically large values

Visualizing the top 3 highest 
values in intermediate ESM2 
layers, against the median 
value.

Massive activations begin in 
early layers, and accumulate 
throughout the model.

Top 3 largest 
activation 

values per layer

Median 
activation 

value

ESM2 layers
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ESMFold Large transformer model latent spaces exhibits 
pathologically large values
A pervasive issue across large transformer models!
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ESMFold Large transformer model latent spaces exhibits 
pathologically large values

A pervasive issue across large transformer models!
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What if we just remove these wacky channels?
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What if we just remove these wacky channels?
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What if we just remove these wacky channels?

Despite there being 1024 channels in the 
embedding, simply removing 3 channels causes 

prediction ability to entirely deteriorate.
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Why should we care about these massive activations?

● Training stability
● Model compression and 8-bit quantization
● Model interpretability
● …

If removing 3 channels can remove performance, is the information evenly 
distributed through all the channels?

If not, can we compress these channels?
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Why compress?

● More portable representation
● Better understanding of protein 

folding internals
● Compressed data distributions are 

easier to learn during generative 
modeling
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An autoencoder for protein embedding compression
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An autoencoder for protein embedding compression

a simple fix for massive activations:
post-hoc channel norm
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Obtaining CHEAP embeddings

1. Tokenized 2. Continuous

● Discretize embeddings 
using FSQ

○ ‘snaps’ continuous 
encoder values to 
discrete bins

● Take the output of the 
downprojecting autoencoder
○ apply tanh to bound 

values between [-1, 1], 
to bound values during 
diffusion
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Side note: why tokenized representations?

Tokenized representations can be helpful for our downstream aims of generation and search:

MaskGIT: Masked Generative Image Transformer Foldseek

https://arxiv.org/pdf/2202.04200
https://www.nature.com/articles/s41587-023-01773-0/figures/1
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All-atom structural tokenizer, obtained from sequence alone
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..yes, we can compress the embeddings:

Compression performance 
with respect to sequence:

We can compress up to 8x, and sacrifice very little performance.
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..yes, we can compress the embeddings:

Compression performance 
with respect to sequence:

Compression performance 
with respect to structure:

Sequence information is easier to retain than structure.
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..yes, we can compress the embeddings:
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We can compress lengthwise and channelwise:

What does this mean for how structural information is 
shared across residue positions?
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What about function information?

Performance degradation with compression is much more gradual.
What does this imply about the information content captured in pLMs 

with respect to downstream tasks?
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● Despite linearly interpolating in the 
latent space, the decoded sequence 
and structure changes very abruptly.

Does the autoencoding scheme “fix” the irregular latent space?

sequence space structure space
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Does the autoencoding scheme “fix” the irregular latent space?

sequence space structure space

● Despite linearly interpolating in the 
latent space, the decoded sequence 
and structure changes very abruptly.

● After CHEAP regularization, the 
change is more gradual
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PLM latent manifolds might be less “rugged” than true 
protein fitness landscapes

What makes for a good latent space?

Should we want more of the latent space 
to map back to a “valid protein” for 

sampling purposes, or properly model the 
rugged protein landscape?

Do current PLM embeddings actually 
recapitulate protein fitness landscapes? 
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“Disrupting” and reconstructing in the token space

corrupted

original
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PLAID (Protein LAtent Induced Diffusion)
ongoing work!

tl;dr – now that we have a regularized & compressed embedding of p(sequence, structure), 
can we train a latent diffusion model for co-generation?
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PLAID, again

● Learn diffusion model in regularized 
and compressed latent space
○ mirrors the regularized 

autoencoder in LDM
● Can learn on longer sequences due to 

CHEAP shortening
● Use DiT instead of U-triangular self 

attention
○ allows for scaling up to higher 

parameter counts
● Scale up to 2B parameters with 

BS=2048
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PLAID, again
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Comparing noise schedules in original and compressed latent space:

Noising in the CHEAP compressed space maps to noise in the 
sequence and structure space that is is closer to the true 

signal-to-noise ratio.
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Search against the structure database (PDB100) to 
see if our samples are sensible…

Search against the sequence database (UniRef90) to see if our 
samples are sensible…

prompt: “yeast” AND “6-phosphofructokinase activity” 

● closest match: 3o8o [Structure of 
phosphofructokinase] 

● organism: Saccharomyces cerevisiae 
(i.e. yeast)

● Sequence identity: 47.9%

● closest match: PFK1 [6-phosphofructokinase, alpha 
subunit] 

● organism: Hypocenomyce scalaris (also in the fungus 
kingdom)

● sequence identity: 50.67%

Results have enough similarity to pass the sanity 
check, but enough sequence diversity to ensure 
that we are not merely memorizing the training 
dataset.TMScore: 0.96

RMSD: 1.4

Samples demonstrate sequence and structural conservation
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Sample

Shared

6cd6

Sample

Shared

6cd6

Sample

Shared

6cd6

Sample

Shared

6cd6

TMScore: 0.858
Sequence Identity: 29%

Closest Foldseek neighbor: 6cd6 (human calcium/calmodulin-dependent protein kinase kinase 1)

prompt: “human” AND “protein kinase activity” 

Examining active site conservation

C lobe

N lobe

DGF catalytic motif

Active site residues 

activation loop
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Takeaways

● The latent space of ESMFold is disorganized with 
massive activations

● Compressing the latent space shows that many 
channels might be extraneous for structure 
prediction

● Information content relating to sequence, 
structure, and function is not symmetrical

● CHEAP regularization helps with latent diffusion 
model training, leading to an all-atom 
co-generation model with sequence database 
scale coverage
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