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Generative Models for
Real-World Drug Discovery

Amy X. Lu

April 30th, 2025
PhD Dissertation Talk
BAIR Seminar



- biology as a data modality for

/ generative modeling

Generative Models for
Real-World Drug Discovery

\ ~ evaluations/tasks anchored

around drug discovery for
protein design
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A simplified look at modern drug discovery...

GLOBAL HEALTH

From Jan. 2020: China Identifies New

Virus Causing Pneumonialike Illness

The new coronavirus doesn't appear to be readily spread by
humans, but researchers caution that more study is needed.




A simplified look at modern drug discovery...

(disease identification)




A simplified look at modern drug discovery...

(target identification)




A simplified look at modern drug discovery...

(lead identification)

(lead optimization)




A simplified look at modern drug discovery...

(clinical trials / FDA approval)




A simplified look at modern drug discovery...

(treatment becomes available!)



Drug discovery is time-consuming

(disease identification)

(target identification)

(lead identification)

> ~8'15
years!
(lead optimization)

(clinical trials / FDA approval)

(treatment becomes available!)




Accelerating drug discovery with Al?

(lead identification)

(lead optimization)




Accelerating protein design with Al?

Relative molecular mass

proteins!

\
{ b
)

\ e

28 ‘
(

v )
Peptides Cell-based i

molecules therapeutics phage therapy 4 stem cells ( | e ad 0 pti m i Zat i on )
Degree of complexity

(Da)

Molecular mass

Cell permeability




Accelerating protein design with Al?

@Image created

Please generate a comic about the following. Make it as clear as
possible what is happening in the scene; conveying clarify is more
important than artistic quality. Make it very clear, like it's a children's
book and a 5 year old should be able to understand what's going on

* A car component is loose and there's a weird sound

* we open the car hood to look to identify what's wrong. Turns out
there is a loose bolt

* we go through a bunch of tools and hammers and wrenches to find
the right tool that will tighten this up

* after trying a bunch, we finally find the right wrench!

* we take the car out for a test drive to make sure we didn't break
anything else

* cool, everything works, now we sell this wrench to other people
whose cars are also making this sound.

w)

text prompt

|

0

image



Accelerating protein design with Al?

Prompt: Desired attributes
HUMAN [and] HEME BINDING (ex. “heme binding”)

qubstrate

2 H79

103 0

64
141

Global RMSD: 1.16A B Sampled

Global Seq. Id.: 53.3% 1y4v (T-To-T(High) protei n / molecule!
quaternary transitions in
human hemoglobin)




The potential of deep learning for protein structure

prediction

THE NOBEL PRIZE
IN CHEMISTRY 2024

JOh n lhv
Jumper

Hassabis
“for protein structure prediction”

THE ROYAL SWEDISH ACADEMY OF SCIENCES

Median Free-Modelling Accuracy

100

80

60

GDT

40

20

CASP7 CASP8 CASP9  CASP10  CASP11  CASPI2
2006 2008 2010 2012 2014 2016

CASP

ALPHAFOLD 2

ALPHAFOLD

CASP13  CASPI14
2018 2020




The potential of deep learning for protein structure
generation

Designing proteins with RFdiffusion

Inspired by deep-learning @
methods for generating
synthetic images.

L

“for computational
protein design” _—

THE ROYAL SWEDISH ACADEMY OF SCIENCES #Nobel Prizgf




What else might we need for drug discovery?

this talk

A

Co-generation Control Immunogenicity

& antigen expression
- can we achieve organism
specificity?

- can we simultaneously - how can we specify
generate sequence and complex and multi-objective
structure? constraints?

e e Biosecurity Data curation
y : - how should we measure - how should we collect data
- can we speed up inference ) o
. ) " and prevent the potential for for model (pre)training in
to improve “shots on goal”? . :
dual use? costly acquisition regimes?
\ j
~

other PhD works



What else might we need for drug discovery?

this talk

A

Co-generation Control . .
Immunogenicity

- can we simultaneously - how can we specify
generate sequence and complex functions and
structure? constraints?

- can we achieve organism
specificity?

Compressed protein Latent diffusion for all-atom

representations generation
(Cell Patterns, to appear) (in submission)




What else might we need

other PhD research:

for drug discovery?

deployment & model understanding

A

Model-based
optimization for
protein engineering
(Kolli et al., 2022)

Dense passage
retrieval for

homology search
(Boger et al., 2023)

Effect of training
data compositions
on protein language

model likelihoods
(Gordon et al., 2024)

Guided diffusion
with differentiable
biophysical energies

(unpublished)

Evo2 biosecurity
and inference
optimization

(Brixi et al., 2025)

Compressed protein

representations
(Cell Patterns, to appear)

Latent diffusion for all-atom

Biological data selection from
an information theoretic

perspective
(in progress)

generation
(in submission)




Agenda

Issues and
Diagnoses
4 I 4 N\ N\ N I
PLAID CHEAP
Primer on : (Compressed Data selection
(Protein Future
Al for drug = Latent Hourglass kw1 and model ™
di = g Embedding understanding outlooks
IScovery 1.r;?ucle Adaptations
Diffusion) of Proteins)

\_ AR J AN 2N J

N




What exactly is a protein?

Amino
acids

“_text”
1D string

Image source: AlphaFold1 blog post

Alpha
helix

Pleated
sheet

Pleated
sheet

Alpha
helix

“image/video”
3D positions


https://deepmind.google/discover/blog/alphafold-using-ai-for-scientific-discovery-2020/

Backbone structure vs. all-atom structure

Amino
terminus

GBYR...

(order of t-shirts => protein sequence)

AMINO ACID | AMINO ACID 2



The co-generation problem

Prediction only

Known protein : Designed protein
(all-atom) -' (backbone only)
Predict San_:ple
MENFQKVEKIGEGT . -
YGVVYKARNKLTGE e A
VVALKKIRLDTETE e T
GVPSTAIREIS... Feasib}w
protein
structures
\ J \ J
AlphaFold Previous
/ ESMFold generative

methods
Backbone-only

VX
Trp185| - | W

R

Ser160

sidechains are crucial for mediating function!



Sidechain atoms generation require knowing the sequence

SEQUENCE &
SIDECHAIN ATOMS

BACKBONE ATOMS

GSHMSREEIRKVVEEM
---------------- VRKLKQGSPEDISKYL
---------------- SPDVRGQEALKYMVRP




All-atom design as a multimodal generation problem

ALL-ATOM STRUCTURE

SEQUENCE &
SIDECHAIN ATOMS

BACKBONE ATOMS

———————————————— VRKLKQGSPEDISKYL
———————————————— SPDVRGQEALKYMVRP |




-atom design as a multimodal generation problem

ALL-ATOM STRUCTURE ———=¢.8. ESMFold——
p(structure | sequence) |p(sequence)
BACKBONE ATOMS SRRNCE &
SIDECHAIN ATOMS
sample
s o A from
________________ GSHMSREEIRKVVEEM p(Sequence | structu re) p(StrUCtU re)
---------------- VRKLKQGSPEDISKYL e.g. ProteinMPNN
---------------- SPDVRGQEALKYMVRP
VRS
sample
from

Goal: | p(sequence, structure) |~ /e

from




Motivation: Can we repurpose priors from pretrained
models?

Vision-language models trained
on internet-scale datasets
capture useful priors for
decision making tasks.

Can we apply this to biology?


https://robotics-transformer2.github.io/
https://robotics-transformer2.github.io/

Can we sample all-atom structure from the
joint distribution p(sequence, structure)
and use priors from pretrained protein
folding models?



The base components: protein folding model architectures

<

€ ——— tpraey T
AlphaFoldz. Y (Drrrtrt —O—*% prﬁfmm‘_. _’% 5 o

' i i | :
Uses an explicit b
Terees Structure i IRARS
retrieval ste =t bl s | 5

p 1 — .!.171 .I$ ‘)’J’L Y‘,%‘

i ion| —»- remz:r'&am E - 3D Stn;ict\;re

- jr’ (:r.c) ‘ s j re) \
L <« Recycling (three times) }

harness addltlonz.il learn structural features generate structures
sequence-based priors from sequence latents



The base components: protein folding model architectures

€ —— (Gt t tersesr revpes High
> MSA (Binge reprce]) — confidence
—(@®—> X |representation —» —
b 4 database (s.no) \
search Sap——
Structure
Grevees _< Evoformer e
(48 blocks) 8 block:
Input sequence (8 blocks)
1Pr4e
Pair
/D_, . » “ ||representation| — 3D structure
T (o) ‘ (rro)
\—p| Structure N .
database
search
Templates
<« Recycling (three times)
Pretrained via Masked LM
Pairwise Recycling |

0o ESMFold:

Replaces retrieval
step with a language
model

Ooooooooo

Single Sequence

harness additional
sequence-based priors

product /
difference,

Triangular
Update

Pair Rep

Structure
Module

Transition

Self
attention

J

Folding Block

learn structural features
from sequence latents

8 blocks

Predicted
structure and

generate structures




%

Observation: at

In-f.ere.nce., the ) PL-M N 7/ Recycling \
pairwise input Is oA
initialized as zeros... } AL

& blocks confidence ¢
Folding Block
- Sequence
re p rese ntatl on harness additional learn structural features generate structures
' sequence-based priors from sequence latents
contains all
information

about the
structure!



A v Junaig, uﬁﬂomﬁ “ mm M 2@@@

< Amv PIOINSHp — B

embedding would only
require the sequence
during training (!)

Generating this

7

@



Sequence data is cheaper to collect than structure

Cost per Raw Megabase of DNA Sequence

10,000.000
1,000.000

100.000 Moore’s Law

Reseamh Ins rtute

0.001
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

|

Source: https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data



Sequence data is more abundant than structure

BFD
(2.5 billion)
sequence
UniRef90
LAION-5B (193 million)
(5 billion) sequence

text-image
pairs Pfa.nj
(60 million)
sequence

PDB
(214K)

structure



Sequence data has different coverage than structure

BFD
(2.5 billion)
sequence
UniRef90
LAION-5B (193 million)
(5 billion) sequence
text-image
pairs Pfa,”,]
(60 million)
sequence

PDB
(214K)

S O\

Intrinsically Intrinsically Structured
Disordered Disordered Protein
Protein Regions

> ~33% of the eukaryotic
proteome is disordered!

structure

can we use sequence to
define the data distribution?




PLAID vO.5: Training a latent diffusion model

MQIFVKTLTGKTITL
EVEPSTTLEVESDT..

ESM2

X0

Diffusion loss

Po(x)

1



PLAID vO.5: Inference-time all-atom generation

DiT

Sequence | MVIHGKTLT
Decoder

~

S

GKTIDLEVE
PSDTIENV..

ESMFold
Structure
Decoder



PLAID vO.5: Early attempts

pLDDT = 100

[ Natural Proteins

| == pLAD

ProteinGenerator

’ { "

lg ]
.m HHI i ||hliiI[‘ﬂl- ‘ Wi H| H |H

pLDDT of Generated Structure

PLAID v0.5: Generating Protein Sequence and Structure Without Structural Training Data

Amy X. Lu, Kevin K. Yang, Pieter Abbeel
ICML 2024 Workshop on Machine Learning for Life and Material Sciences

What’s preventing the
model from learning?

100
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Issues and hypotheses

e Latent space requires regularization

In order to avoid arbitrarily high-variance latent spaces,
we experiment with two different kinds of regularizations.
The first variant, KL-reg., imposes a slight KL-penalty to-
wards a standard normal on the learned latent, similar to a
VAE [40,67], whereas VQ-reg. uses a vector quantization
layer [©©] within the decoder. This model can be interpreted

Rombach et al. High-Resolution Image Synthesis with Latent
Diffusion Models, CVPR 2022


https://arxiv.org/pdf/2112.10752
https://arxiv.org/pdf/2112.10752

Issues and hypotheses

e QOvercome O(L?) memory constraints
and increase protein length to 512

pLDDT =0 pLDDT = 100



Issues and hypotheses

G. NCSN++ (Song et al., 2021) FFHQ-1024> Reference Samples

e large latent space corresponds to

high-resolution image generation
o Rombach et al. latent space:
HxWx4 = 64 x 64 x 4

o Ours:
Lx1024 =512 x 1024




ESMFold latent space exhibits pathologically large values

esm s Magnitude

/

1000

Latent space will require

1500 regularization for diffusion to work.

Channel
dimension




ESMFete ESM2 latent space exhibits pathologically large

Val ues Top 3 largest
3000+ activation

values per layer

2000+

Magnitudes

—
o
o
o

O—FH—HH—WWH‘““W’

:I g 1I8 2|7 Median
activation
Layers value

ESM2 layers




What if we just remove these wacky channels?

30

25

1 1
0 100 2000 101! 10 10°

Activations Activations (log-scale

-10 0 10 -10 0 10
Activations Activations



What if we just remove these wacky channels?

o Lad 1
0 100 2000 10—1 10 103
Activations

Activations (log-scal€

-10 0 10 -10 0 10
Activations Activations

f

TMScore to Original Structure

© 000
o N W

Prediction pLDDT

© o -
© © o

©coo
(S, W

o
N

100
90
80
70
60
50
40
30
20
10

+

Il All channels
[ Outliers Removed

-<¢>

I All channels
1 Outliers Removed




Addressing the hypotheses: embedding compression

Issues and hypotheses

e Large latent space corresponds to

high-resolution image generation
Rombach et al. latent space:
HxWx4 = 64 x 64 x 4

Ours:
Lx1024 = 512 x 1024

Diffusio

n models in their naive
ormulation often fail for 1024 x 1024

resolution generation.

Issues and hypotheses

e Overcome O(L?) memory constraints
and increase protein length to 512

4
o’ /
9

Since not all channels are
necessary, can we
compress the embedding?

Can we also reduce the
protein length?



An autoencoder for protein embedding compression

S e S e v == R R '
& ®/, Reconstruction loss

i Ull : @ tanh smoothing " ' ~
E ’ \\V) /

e “m b

i ‘ ‘.

up-projection  Un-normalize

Normalization down-projection

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
:
activations: E
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
’ ;
1
1
I Hourglass Encoder ------+  "TTeees Hourglass Decoder -------

ESMFold : .
folding ‘
Simple fix for massive trunk 4 _) =
standardize each ‘_(\_l‘ . E ‘ x
channel independently. N ¥ !
Il | !
X — Xmin 1 !
X = = = Projection =1 I ‘ !
max - hmin layers . b
! : gth &
ueng & ! i channelwise
ESM2 channelwise : :



ible!

Is highly compress

Turns out the latent space

£
a

0.968 0.995

0.920

0.789

TMScore

1024

512

256

128

64

0.999 1.000 0.997 1.000

0.991



Turns out the latent space is highly compressible!

Accuracy

=
o

o
6]

0.0

Sequence Reconstruction

\.

2x length shortening
== No length shortening

V0 N> o 2 &
\9’1/@'\«,{;),\"]/@”)‘\«

Channel Dim.

TM-Score

=
o

o
5]

0.0

Structure Reconstruction

‘\.
2x length shortening
—e= No length shortening
V0 D> 0 D N
'\o@,("\"f) ,\:], © H N

Channel Dim.




What about function information?

g Solubility
z e ede—K — K
5 054
<
0.0 T T T T
23 25 27 2°
# Channel Dimensions
Subcellular Localization
2 =" T L
£ 051 ,,/"""/*/’k
v} P
g x
0.0 T T T T
23 25 27 29
# Channel Dimensions
Performance degradation with ...for some functions.

compression is more gradual...



What about function information?

45 Solubility 16 Binary Localization - Stability
: 4 — :
/‘,,_at-—‘“‘—‘*‘ o Q
g Rk * g = -‘é * =tk — K
3 0.5 41 30.5- g 0.5 A > i
£ < 2
(7]
0.0 T T T T 0.0 T T v T 0.0 r T T T
23 25 27 2° 23 25 2! 2° 23 25 27 29
# Channel Dimensions # Channel Dimensions # Channel Dimensions
Fluorescence Subcellular Localization B-lactamase
1.0 1.0 1.0
Q Q
-g Q t/*/* " g
A * = J B J
g 0.5 e o 5 0.5 ’/, g 0.5 /,,_,./' &
;.J_ t/t/*—‘ é :l’. t"/*,t—t
0.0 T T r T 0.0 T T T T 0.0 r T T T
23 2% 27 29 23 2% 2? 2% 23 25 27 2°
# Channel Dimensions # Channel Dimensions # Channel Dimensions
Performance degradation with ...for some functions.

compression is more gradual...



Intuition: what is the speed of this motorcycle?




Intuition: what is the speed of this motorcycle?

Only x
(pure n)éiseq; — Semantic Compression

~ 80 N
% A
E 69 A /(‘> ASAL
=3 | 7 & i

—3 | A Bk
1 L \

i A E :| g ARN 4 A (RN
" Large-scale 2 20 Local, Imperceptible
Image Structure A 4 Details

0 Mmnscecee o o o )
0 0.5 1 1.5 (Almost) xo

Intermediate Xo<i<T Rate (bits/dim)

what constitutes semantic vs. perceptual
compression for proteins? what level of
detail do we need for drug discovery?

..what level of compression is optimal?

Motivation PLAID v0.5 CHEAP

PLAID results Future Directions
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Training the PLAID latent diffusion model...

Diffusion loss

S 1
H : -
MQIFVKTLTGKTITL ESM2 _)
EVEPSTTLEVESDT... [
H
— X' po(x)
X0 t
Dimensions:

L x 1024




...but add embedding compression with CHEAP

Diffusion loss

= 1
— %
ESM?2 CHEAP . |
e Encoder DIT |
*
S —

I
X0 Xnorm  h(X) *o Xy Po(x)

|

compress from 512x1024 -> 256x32




Adding compositional function + taxonomic conditioning

Diffusion loss

1

MQIFVKTLTGKTITL ESM2 CHEAP DiT __)é é

EVEPSTTLEVESDT... Encoder

H
GO t b ” !ox!
[ er'm] X0 Xporm he(X) XO Xt peT(x)
[Organism]

Conditioning via classifier-free guidance

Sequence databases have more sample-annotation pairs!



Adding compositional function + taxonomic conditioning

MOIFVKTLTGKTITL
EVEPSTTLEVESDT..

[GO term]

[Organism]

/

towards text-controllable interface

©)

- complex controllability for
drug discovery

towards organism-specific
conditioning

©)

- towards controlling
expression & humanization

Sequence databases have more sample-annotation pairs!




PLAID unconditionally generates diverse all-atom
structures

Very Low Low High Very High
(pLDDT < 50) (50 < pLDDT < 70) (70 < pLDDT < 90) (pLDDT > 90)




PLAID unconditionally generates diverse, high-quality folds

Protpardelle Protpardelle

% >1en600_samp97
(%?% /:G gi?fi l&ﬁ i AGGGGGGGGGGGGGGGGGGGGGGGGGLGLGLLLPPAGL. . .

>1en600_samp98

o /ﬁ y PPPPGGAGGGGAAAALAGGSPGGPPGGGGGGGGGGGGG. . .
%{\;{é \%‘d"@ @’ E%é@’ ”d >1en600_samp99

PPGPALPPSPGPGGVPPPPPLPPPPLPGGAPPAGGGLL . . .

Prote1nGenerato

ProteinGenerator

>1en600_000097
GAAGLTAAAAVVGAAAAAGAAAAAALAAAAGAGAAAAA. . .
>1en600_000098
AGAAGAAAAAAAAAAGAAAAGAGGGAGGAAAAAAAAAG. . .
>1en600_000099
VAAAQAVQGATIAAAAALAATAALGLTAAGIAAPLLALV. ..

Multiflow

>1en600_sample_97
LLGGLLGGLLGGAAGGAGAGAAAAGGGAVGVGVAGAVT. ..
>1en600_sample_98
ADAATLTVGGGGTGGGGGAGGALGGAAAGGGGRVTLVV. . .
>1en600_sample_99
AGGGAGLAGGAGGAGGAAAAAAAAAAAAAGAGGGAAAA. . .

PLAID

>1en600_sample97
PDMGTVLGLAHSVGHLDFKTPDLSVADLETNLALLAAH. . .
>1en600_sample98
FEMFDDKGGDLWERAASSGQLLIDVAYLANNGLRDGAT. . .
>1en600_sample99
GNGGQARGTDDPLTHALQTLFQSAALDQSLQGDPENAV. . .




Function-prompted generations learn active site sidechains

Find nearest structural

Prompt: match to real proteins
_1iijﬁﬂiii e 5
[and] — PLAID — ©)
IRON ION @ ?/gg%
BINDING &~
Il Sampled 3RYG

(128 hours neutron structure
of perdeuterated rubredoxin)

Global c7
alignment
to find c8 PLAID not only learns that

Cc40 . :
o4 cysteines coordinate the

iron ion, but also the
sidechain positioning...

active site

Cc4
C5 c47

Cc48

o L & 11 16 21 26 31 36 41 46

Global RMSD: 0.35A  |RHLEKECEYIYIEAAGAIENDIAPGTAFKELPEDWLEPIEGAPKYHFK
1 & 11 16 21 26 31 36 41 46 51
Global Seq. Id.: 53.3% |axuvBKINGYIYDEDAGDPDNGISPRTKFEELPOOWVEPIMGAPKSEFEKL FE




Function-prompted generations learn active site sidechains

Find nearest structural

Prompt: match to real proteins
_1iijﬁﬂiii e 5
[and] — PLAID — ©)
IRON ION @ ?/gg%
BINDING &~
Il Sampled 3RYG

(128 hours neutron structure
of perdeuterated rubredoxin)

Global c7
alignment
to find c8 PLAID not only learns that

Cc40 . :
o4 cysteines coordinate the

iron ion, but also the
sidechain positioning...

active site

Cc4
C5 c47

Cc48

o L & 11 16 21 26 31 36 41 46

Global RMSD: 0.35A  |RHLEKECEYIYIEAAGAIENDIAPGTAFKELPEDWLEPIEGAPKYHFK
1 & 11 16 21 26 31 36 41 46 51
Global Seq. Id.: 53.3% |axuvBKINGYIYDEDAGDPDNGISPRTKFEELPOOWVEPIMGAPKSEFEKL FE




Function-prompted generations learn active site sidechains

Prompt:
HUMAN [and] DEAMINASE
ACTIVITY

N % ...despite these key
2 2= residues not being
adjacent in the
sequence.

RMSD: 2.25A I Sampled

Seq. Id.: 24.3% | 7RTG (Crystal Structure of
the Human Adenosine
Deaminase 1)



Transmembrane proteins exhibit expected hydrophobicity
patterns

Prompt:
HUMAN [and] MONOATOMIC CATION

TRANSMEMBRANE TRANSPORTER ACTIVITY Hydrophobic residues
RS N K " are found at the core,
‘ as expected.

Hydrophilic Hydrophobic
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From proof-of-concept to deployment in Al for drug
discovery

1.0 1 log(seq_len) g B '

e |[sthe data learning a _ B 5 l
“biological world model”, or |
artifacts of the training data?

N o v

o
o
L

tmscore

©
S
f

20 30 40 50 60 70 80 90
plddt

Length determines overconfident predictions,
but we often use pLDDT for generative model
evaluation.



From proof-of-concept to deployment in Al for drug
discovery

=0.50,r=0.51 =0.65,r=0.62 =0.54,r=0.58
] 1.0 d 1.0 L 1.0 L
e |sthe datalearning a
é 0.6 é 0.6 é 0.61
13 ' . b s s 5
iological world model”, or
, w w w
g 0.24 E 0.24 g 0.2 1
" " "
artifacts of the training data?
-0.2 T T T T -0.2 T T T T -0.2 T T T T
-25 -20 -15 -1.0 -05 0.0 -25 -2 -15 -1.0 -05 0.0 -25 -20 -15 -1.0 -05 0.0
ESM2 (8M) Log Likelihood ESM2 (35M) Log Likelihood ESM2 (150M) Log Likelihood
=0.37,r=0.49 =0.19,r=0.35 = —0.00,r=0.17
1.0 R 1.0 L 1.0 2
0.8 1 0.8
g g 061 g 064
s £ s
8 2 04 3 044
(2] w (2]
(%2} (%2} (%2}
> > 0.21 = 024
a [=) [=)
0.0 1 0.0 1
-0.2 T T T T -0.2 T T T T -0.2 T T T T
-25 -20 -15 -1.0 -05 0.0 -25 -20 -15 -1.0 -05 0.0 -25 -20 -15 -1.0 -05 0.0
ESM2 (650M) Log Likelihood ESM2 (3B) Log Likelihood ESM2 (15B) Log Likelihood




From proof-of-concept to deployment in Al for drug
discovery

Genome modeling and design
across all domains of life with Evo 2

Garyk Brixi*'1-%3, Matthew G. Durrant*'2, Jerome Ku*'2, Michael Poli*%35,

Greg Brockman**>%5, Daniel Chang**1%>3, Gabriel A. Gonzalez*"2, Samuel H. King**%23,
David B. Li**123, Aditi T. Merchant*1-23, Mohsen Naghipourfar*=!%7, Eric Nguyen*%3,
Chiara Ricci-Tam*»12, David W. Romero*24, Gwanggyu Sun**12, Ali Taghibakshi**%4,
Anton Vorontsov**>4, Brandon Yang**’z'é, Myra Deng?®, Liv Gorton®, Nam Nguyen®,
Nicholas K. Wang?®, Etowah Adams®, Stephen A. Baccus®, Steven Dillmann?,
Stefano Ermon®, Daniel Guo'3, Rajesh Ilango’, Ken Janik*, Amy X. Lu’, Reshma Mehta®,
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Medium-term directions...

Latent diffusion for drug
design

e |everaging “fuzziness” in # of atoms
and binding position

e Alleviating computational challenges for
large complexes with compression

e Semantic control in latent space

“‘a photo of a giant macaron and a croissant splashing in the Seine with the Eiffel Tower in the background’’

T T e

(a) Original (b) Swap objects (c) Enlarge macaron  (d) Replace macaron (e) Copy scene appearance (f) Copy scene layout

“‘a DSLR photo of a meatball and a d falling from the clouds onto a meighborhood”

T

onut  (e) Copy scene appearance (f) Copy scene layout

‘(a) ginal ] (b) Mov donut
Diffusion self-guidance for controllable image generation.
Epstein et al., 2023




Medium-term directions...

Multimodal biophysical
reasoning / chain-of-thought
“scratchpad”

April 16,2025 Release

Thinking with images

OpenAl 03 and o4-mini represent a significant breakthrough in

visual perception by reasoning with images in their chain of thought.

Steric clash Aromatic rings flatness Volume overlap

Bad: Bad:

Molecule intertwined and atoms clashing  Conjugated pi bond systems should be flat ~ Ligand and receptor clash

Example of how biochemical implausibilities can

be reasoned through language.
Image source: PoseBusters documentation




Long term goals...

e How can we move to a
“target-agnostic”
paradigm in drug
discovery using advances
in task-agnostic Al

systems?

(@)

Al for biology as reasoning
about the molecular-level
world

How can we extrapolate
/ “reason” beyond

human intelligence?

o How does data
availability & simulation
fidelity affect how this is
done?

How can we work
with rather than
against Moravec’s
Paradox, using
scientific
applications as a
testbed?
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Linear interpolation in the latent space
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Linear interpolation in the latent space

Naturalness of Latent Interpolations
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Protein language model latent spaces are less rugged than true fitness landscapes!



Noising the original latent space does not affect the structure...

40
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80

100

Very Low Low High Very High

(pLDDT < 50) (50 < pLDDT < 70) (70 < pLDDT < 90)  (pLDDT > 90)

= |

| ]
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Forward diffusion timestep
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QAFAFDFQ QAFAFDFQ QAFAFDFQ QAFAFDFQ FRTPWPEP
QNQHDLNL QNQHDLNL QNQHDLNL QNQHDLNL RCNTSGDN




...noising the compressed latent space does map to corrupted
structures

Very Low Low High Very High
(pLDDT < 50) (50 < pLDDT < 70) (70 < pLDDT <90)  (pLDDT > 90)
[ |
— | —
0 25 50 75 100
Forward diffusion timestep t
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RSQFVPAD LIDYTPLL LIYYTPLL LIYITPLL LIIITTLL
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QNQHDLNL TDYREMKA TTYREMKN TGYREYKN TRYREGKD



...noising the compressed latent space does map to corrupted
structures

Before Compression Before Compression After Compression After Compression
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B_,. ¥ main ~ esm [/ esm [ esmfold / v1 /| esmfold.py T Top

| Code | Blame 364 lines (305 loc) - 13.6 KB Rw D& 2 [E
152 def forward(
185 # === ESM ===
186 esmaa = self._af2_idx_to_esm_idx(aa, mask)
187
188 if masking_pattern is not None:
189 esmaa = self._mask_inputs_to_esm(esmaa, masking_pattern)
190

191 esm_s, esm_z = self._compute_language_model_representations(esmaa) \ | / O bservati O n . a't i nfe rence,

192

193 # Convert esm_s to the precision used by the trunk and _the pai rWise in put is

194 # the structure module. These tensors may be a lower precision if, for example, R - R
195 # we're running the language model in fp1l6 precision. |n |'t|a| |Zed as Ze ros_"
196 esm_s = esm_s.to(self.esm_s_combine.dtype)
197 esm_s = esm_s.detach()
198
199 === preprocessing ===
200 esm_s = (self.esm_s_combine.softmax(@).unsqueeze(@) @ esm_s).squeeze(2)
201
202 s_s_0 = self.esm_s_mlp(esm_s)
203 if self.cfg.use_esm_attn_map:
204 esm_z = esm_z.to(self.esm_s_combine.dtype)
205 esm_z = esm_z.detach()
206 s_z_0 = self.esm_z_mlp(esm_z)
207 else:
se¢( 208 $_z_0 = s_s_0.new_zeros(B, L, L, self.cfg.trunk.pairwise_state_dim)
209
210 s_s_0 += self.embedding(aa))
211
212 structure: dict = self.trunk(
213 s_s_@, s_z_0, aa, residx, mask, no_recycles=num_recycles

214 )




- a pervasive issue across LLMs, ViTs, etc.

ESMfetd £ESM2 Large transformers latent space exhibits
pathologically large values

[Submitted on 27 Feb 2024 (v1), last revised 14 Aug 2024 (this version, v2)]

Massive Activations in Large Language Models
Mingjie Sun, Xinlei Chen, J. Zico Kolter, Zhuang Liu

We observe an empirical phenomenon in Large Language Models (LLMs) -- very few
activations exhibit significantly larger values than others (e.g., 100,000 times larger).

LLM. int8(): 8-bit Matrix Multiplication
for Transformers at Scale

Motivation

. - ; ) ’ Tim Dettmers**  Mike Lewis' Younes Belkada’+ Luke Zettlemoyer'*
We call them massive activations. First, we demonstrate the widespread existence of Y

I

Method ‘ ey

—— LLM.int8() — =
LLaMA2-7B, Layer 2 LLaMA2-7B, Layer 2 LLaMA2-7B, Layer 3 LLaMA2-7B, Layer 31 ~—— 8-bit baseline I /"/
07— 16-bit baseline //'
massive activations |0 “.'h.\‘ massive activations 0 Z /- I
8 >
o fte Fos // ;
-2 2

§ 5 . g ‘
<] <] h B I
i = gos w
-6 S é & :\
[ 04 |
Key key emergence of —— !

Figure 5: Attention patterns before and after massive activations appear in LLaMA2-7B. For each layer, we s outlier features 1 B . o

visualize average attention logits (unnormalized scores before softmax) over all heads, for an input sequence. F S N S S S S 4

5 B ~ ~ o ~ B & oy

Parameters

PLAID v0.5

CHEAP

PLAID results

Future Directions



All-atom structural tokenizer, obtained from sequence

alone
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PLAID unconditionally generates diverse, high-quality folds
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PLAID unconditionally generates diverse, high-quality folds

baselines
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From proof-of-concept to deployment in Al for drug
discovery
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Transmembrane proteins exhibit expected numbers of

helices

Prompt:
HUMAN [and]

G PROTEIN-COUPLED RECEPTOR ACTIVITY

GNVLVLIMMILKQREVKSMPNV ‘ DeepTMHMM - Most Likely Topology | Type: alpha TM
WVFNLALSDLLFLLSTPLLVVK Outside!

MSDTSWNLGLSPCKITTFLLFL Mem:\:;:

NLYSSVFFLACLSLDRYLTVRQ o 50 100 150 200 250

GPCRs have the expected 7-transmembrane
topology, both when analyzing the sequence
and structure.



