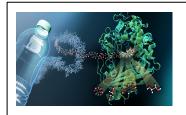


Repurposing Protein Folding Models for All-Atom Generation via Latent Space Compression

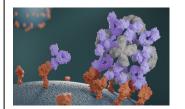
Amy X. Lu October 1, 2025 In silico #002

Designing novel proteins with desired properties is hard



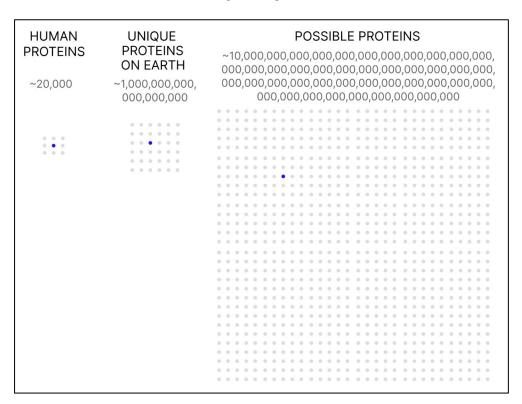
Plastic degrading enzymes

Vaccine development

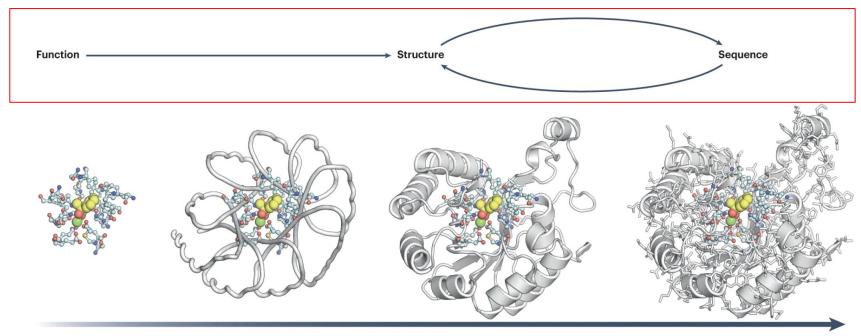


Antibody therapeutics

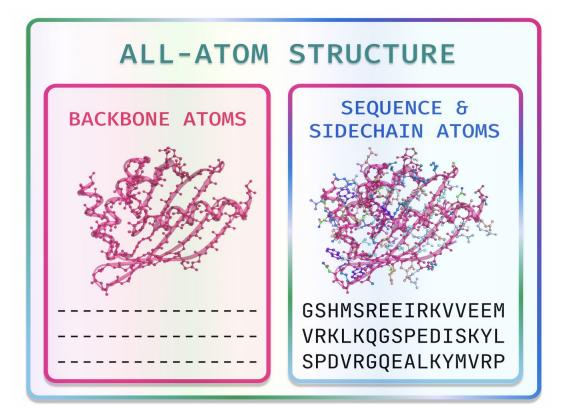
and much more...



Current all-atom methods iterate between sequence and structure design



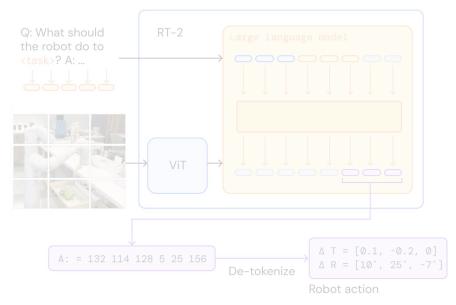
All-atom design as a multimodal generation problem



Placing the continuous sidechain atom positions require knowing the discrete sequence.

→ Can we sample from p(sequence, structure)?

Motivation: Can we repurpose priors from pretrained models?



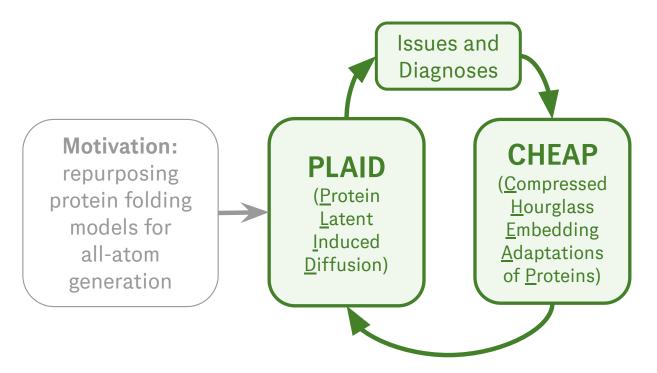
RT-2: Vision-Language-Action Models Transfer Web Knowledge to Robotic Control

Vision-language models trained on internet-scale datasets capture useful priors for robotic tasks.

How can we apply this to biology?

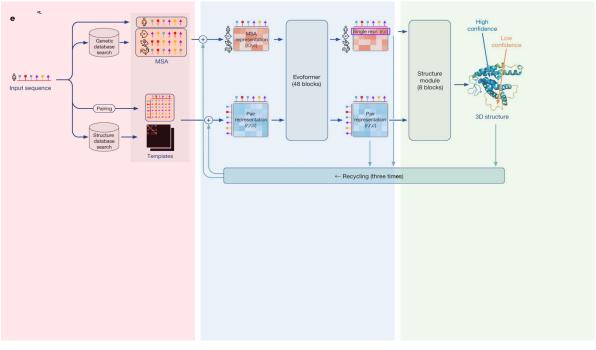
Can we sample all-atom structure from the joint distribution p(sequence, structure) and use priors from pretrained protein folding models?

Agenda



The base components: protein folding model architectures

Uses an explicit retrieval step



harness additional sequence-based priors

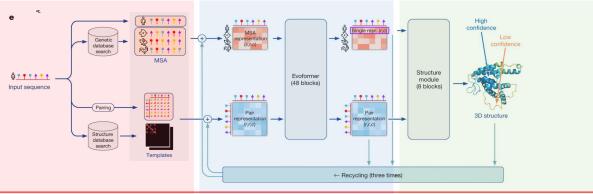
learn structural features from sequence latents

generate structures

The base components: protein folding model architectures

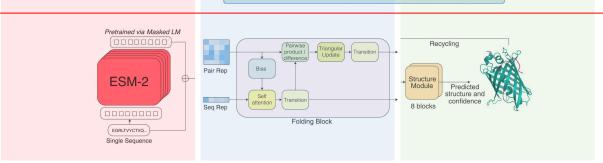
AlphaFold2:

Uses an explicit retrieval step



ESMFold:

Replaces retrieval step with a language model



harness additional sequence-based priors

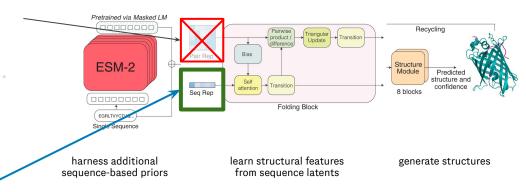
learn structural features from sequence latents

generate structures

```
esm / esm / esmfold / v1 / esmfold.py
     ໃ main ▼
                                                                                                   ↑ Top
 Code
         Blame 364 lines (305 loc) · 13.6 KB
                                                                               Raw (□ ± 0 +
   152
               def forward(
   185
                   # === ESM ===
   186
                   esmaa = self. af2 idx to esm idx(aa, mask)
   187
   188
                  if masking_pattern is not None:
   189
                       esmaa = self._mask_inputs_to_esm(esmaa, masking_pattern)
   190
   191
                   esm_s, esm_z = self._compute_language_model_representations(esmaa)
   192
                  # Convert esm_s to the precision used by the trunk and
   193
   194
                  # the structure module. These tensors may be a lower precision if, for example,
   195
                  # we're running the language model in fp16 precision.
                   esm_s = esm_s.to(self.esm_s_combine.dtype)
   196
                  esm_s = esm_s.detach()
   197
   198
   199
                  # === preprocessing ===
   200
                   esm s = (self.esm s combine.softmax(0).unsqueeze(0) @ esm s).squeeze(2)
   201
                   s s 0 = self.esm s mlp(esm s)
   202
                  if self.cfg.use_esm_attn_map:
   203
   204
                       esm_z = esm_z.to(self.esm_s_combine.dtype)
                       esm_z = esm_z.detach()
   205
   206
                       s z 0 = self.esm z mlp(esm z)
   207
                   else:
                       s_z_0 = s_s_0.new_zeros(B, L, L, self.cfg.trunk.pairwise_state_dim)
--- 208
  209
                  s_s_0 += self.embedding(aa)
   210
   211
   212
                   structure: dict = self.trunk(
  213
                       s_s_0, s_z_0, aa, residx, mask, no_recycles=num_recycles
  214
```


Observation: at inference, the pairwise input is initialized as zeros...

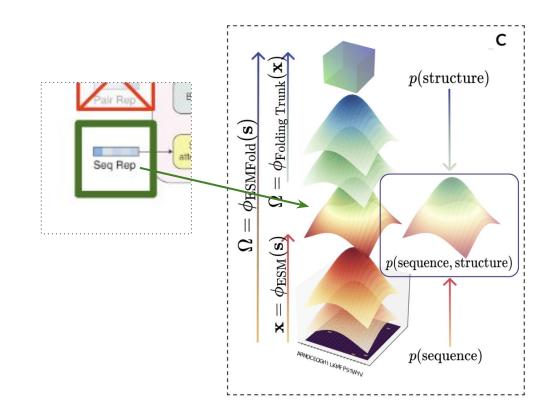
→ Sequence representation contains all information about the structure!



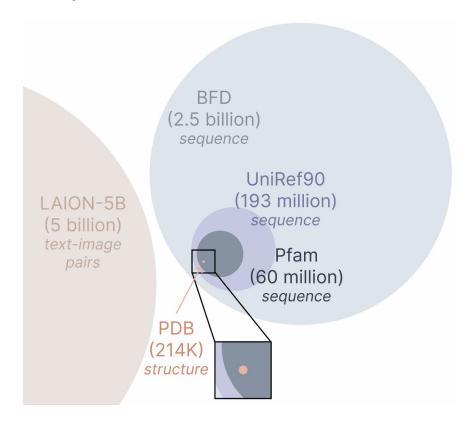
Observation: at inference, the pairwise input is initialized as zeros...

→ Sequence representation contains all information about the structure!

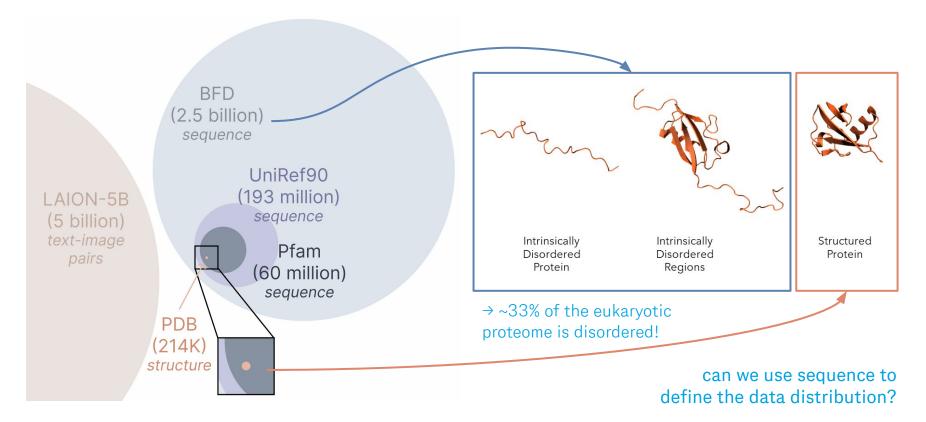
Generating this embedding would only require the sequence during training.



Sequence data is more abundant than structure



Sequence data has different coverage than structure

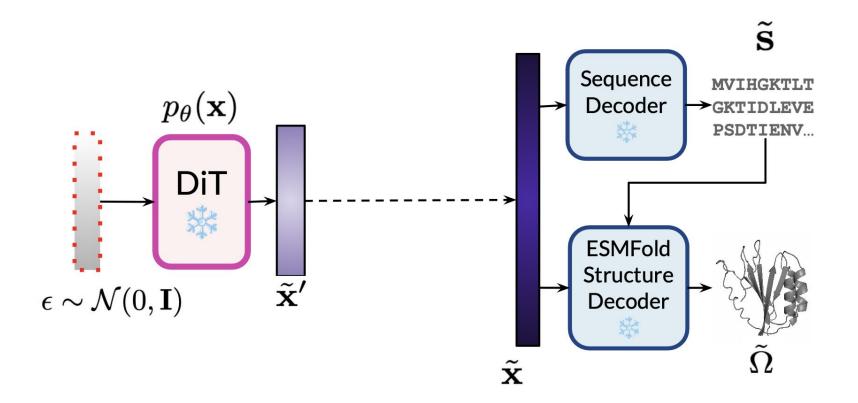


PLAID v0.5: Training a latent diffusion model

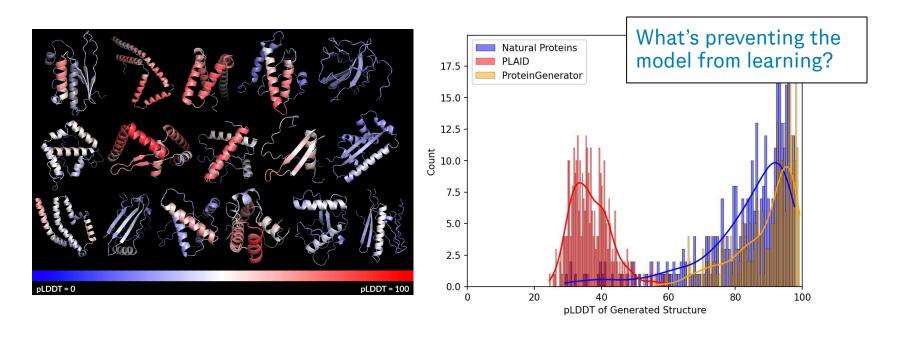


let's learn to generate this latent!

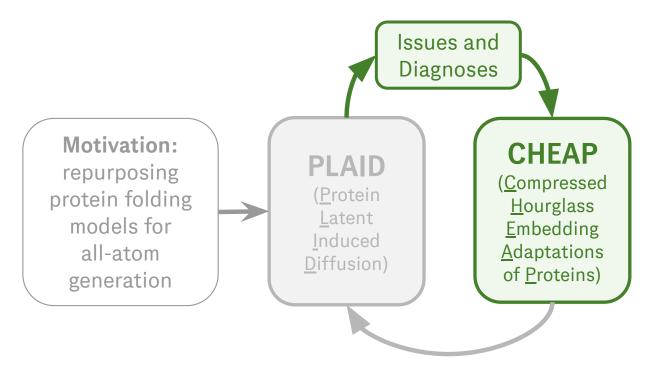
PLAID v0.5: Inference-time all-atom generation



PLAID v0.5: Early attempts



Agenda



Issues and hypotheses

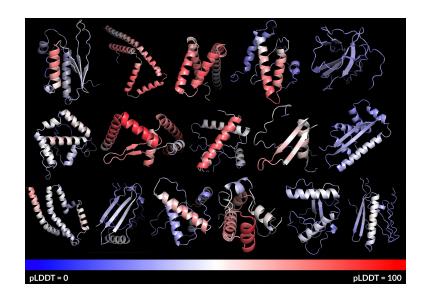
Latent space requires regularization

In order to avoid arbitrarily high-variance latent spaces, we experiment with two different kinds of regularizations. The first variant, *KL-reg.*, imposes a slight KL-penalty towards a standard normal on the learned latent, similar to a VAE [46, 69], whereas *VQ-reg.* uses a vector quantization layer [96] within the decoder. This model can be interpreted

Rombach et al. <u>High-Resolution Image Synthesis with Latent</u>
<u>Diffusion Models</u>, CVPR 2022

Issues and hypotheses

- Latent space requires regularization
- Overcome $O(L^2)$ memory constraints and increase protein length to 512

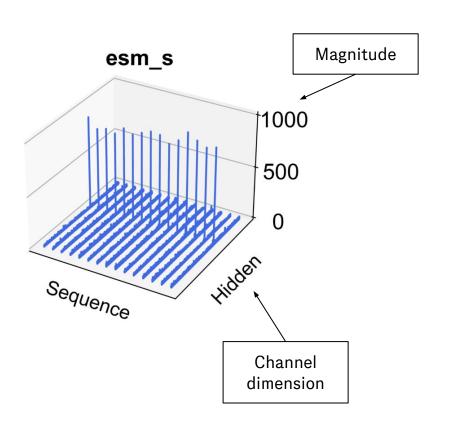


Issues and hypotheses

- Latent space requires regularization
- Overcome $O(L^2)$ memory constraints and increase protein length to 512
- Large latent space corresponds to high-resolution image generation
 - Rombach et al. latent space:
 HxWx4 = 64 x 64 x 4
 - Ours: Lx1024 = 512 x 1024

G. NCSN++ (Song et al., 2021) FFHQ-1024² Reference Samples

ESMFold latent space exhibits pathologically large values



Latent space will require regularization for diffusion to work.

ESMFold Large transformers latent space exhibits pathologically large values

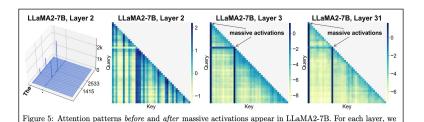
→ a pervasive issue across LLMs, ViTs, etc.

[Submitted on 27 Feb 2024 (v1), last revised 14 Aug 2024 (this version, v2)]

Massive Activations in Large Language Models

Mingjie Sun, Xinlei Chen, J. Zico Kolter, Zhuang Liu

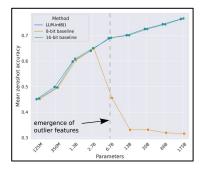
We observe an empirical phenomenon in Large Language Models (LLMs) -- very few activations exhibit significantly larger values than others (e.g., 100,000 times larger). We call them massive activations. First, we demonstrate the widespread existence of



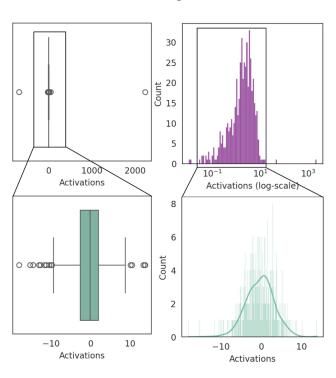
visualize average attention logits (unnormalized scores before softmax) over all heads, for an input sequence,

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale

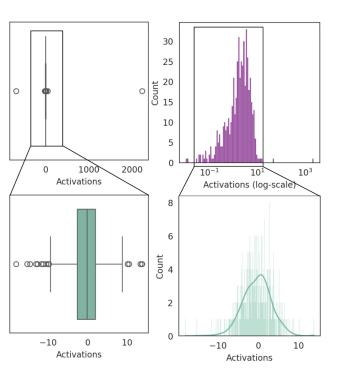
 $\begin{tabular}{lll} Tim \ Dettmers^{\lambda*} & Mike \ Lewis^\dagger & Younes \ Belkada^{\S\mp} & Luke \ Zettlemoyer^{\dagger\lambda} \end{tabular}$

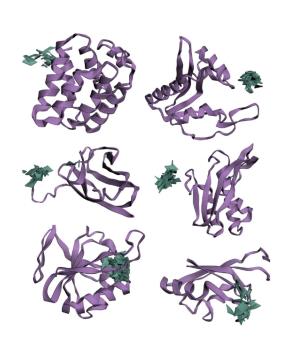


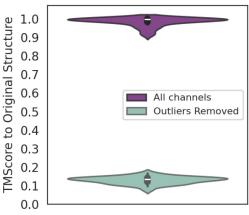
What if we just remove these wacky channels?

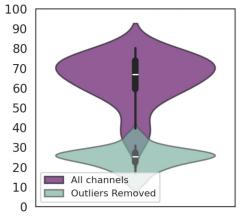


What if we just remove these wacky channels?



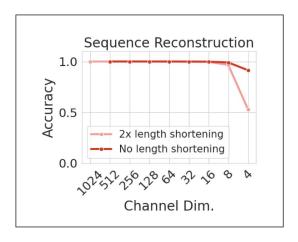


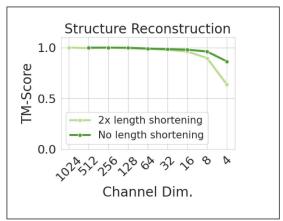




Prediction pLDDT

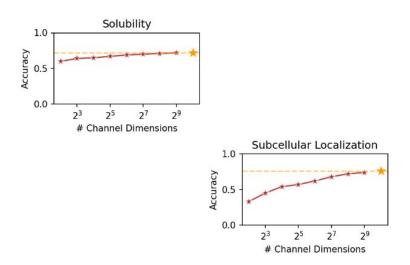
Learning an autoencoder to compress the latent space





Turns out the latent space is highly compressible! Sequence information is easier to retain than structure.

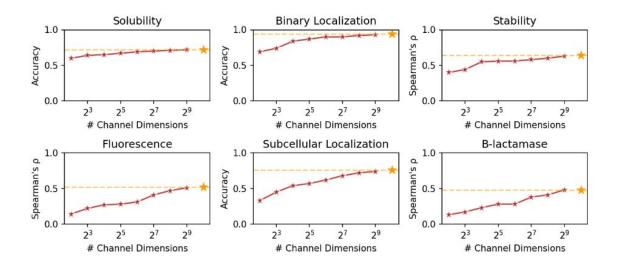
What about function information?



Performance degradation with compression is more gradual...

...for some functions.

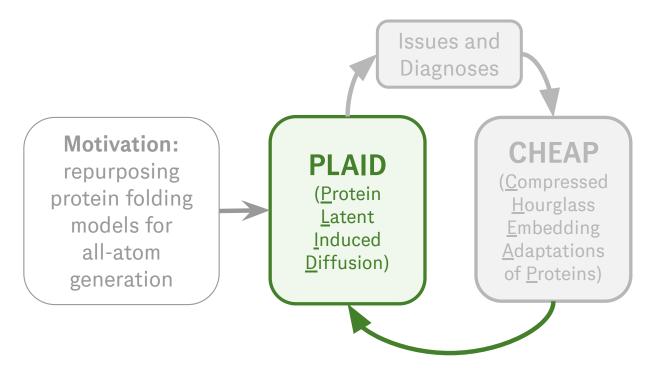
What about function information?



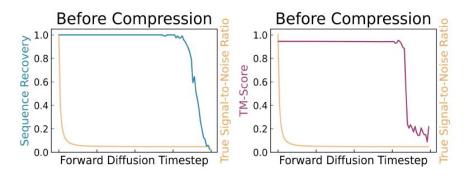
Performance degradation with compression is more gradual...

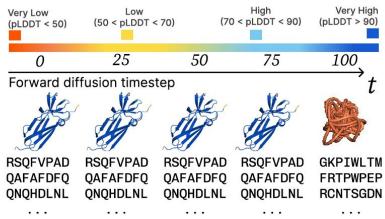
...for some functions.

Agenda

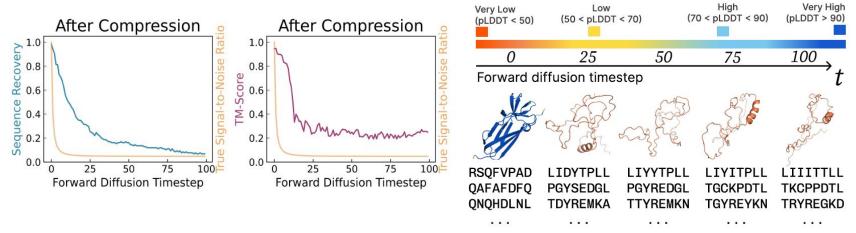


Noising the original latent space does not affect the structure...

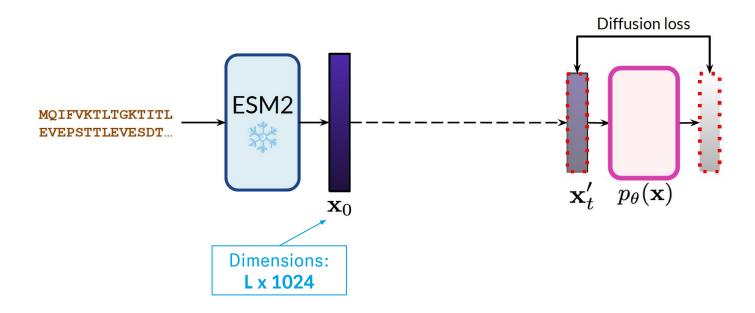




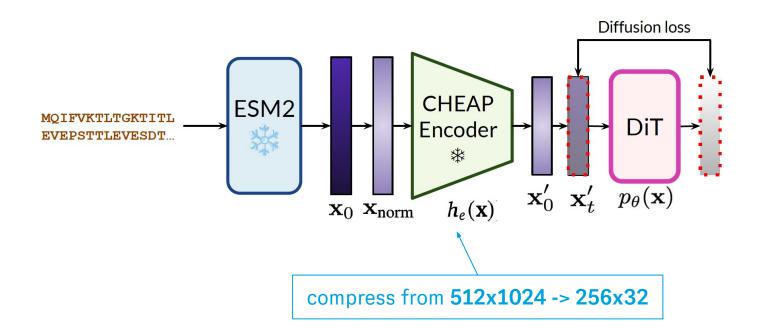
...noising the compressed latent space <u>does</u> map to corrupted structures



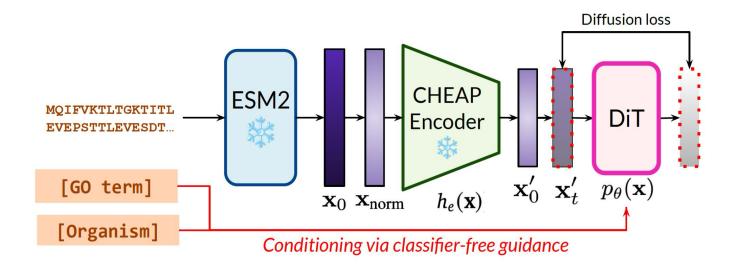
Training the PLAID latent diffusion model...



...but add embedding compression with CHEAP

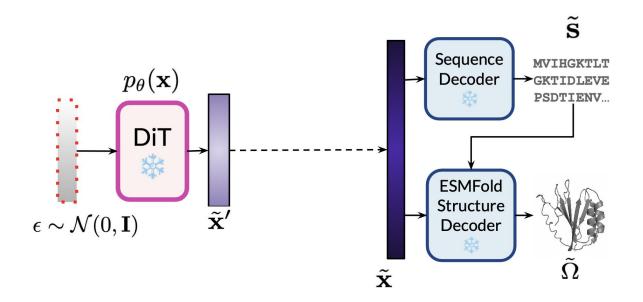


Adding compositional function + taxonomic conditioning

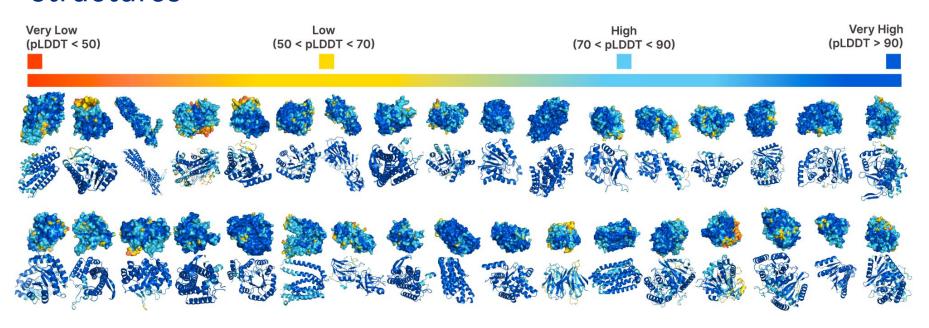


Sequence databases have more sample-annotation pairs!
-> unlocks new axis of controllability.

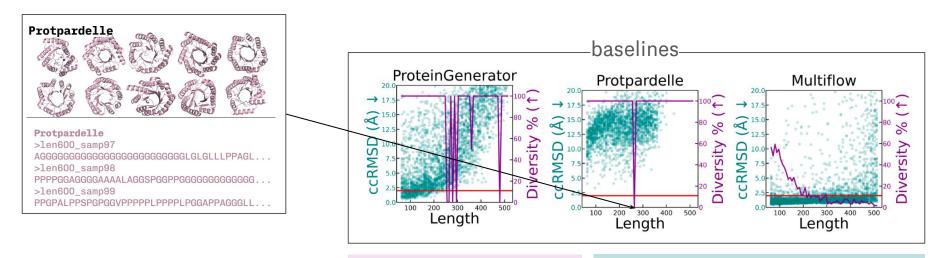
PLAID Inference with CHEAP decoder



PLAID unconditionally generates diverse all-atom structures



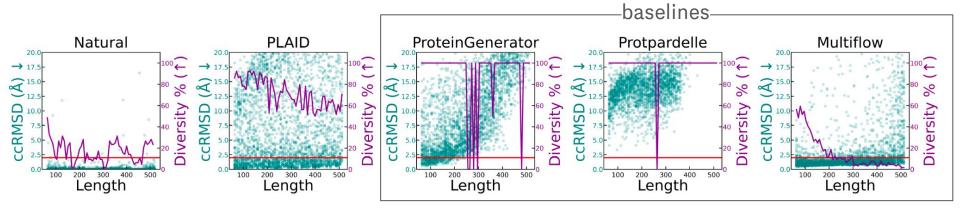
PLAID unconditionally generates diverse, high-quality folds



purple: diversity (↑)
(# of foldseek clusters /
of samples)

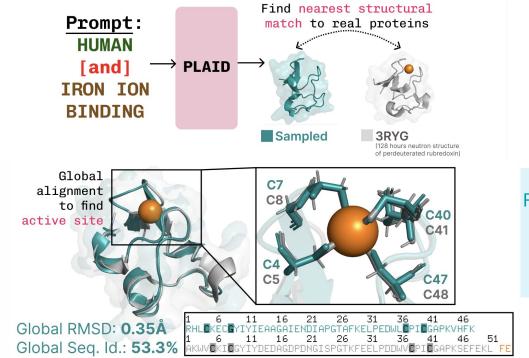
teal: quality (→) (ccRMSD between generated structure and predicted structure of generated sequence)

PLAID unconditionally generates diverse, high-quality folds



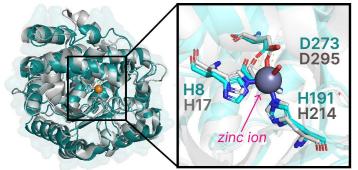
PLAID better balances diversity and quality, especially at longer sequence lengths.

Function-prompted generations learn active site sidechains



PLAID not only learns that cysteines coordinate the iron ion, but also the sidechain positioning...

Function-prompted generations learn active site sidechains



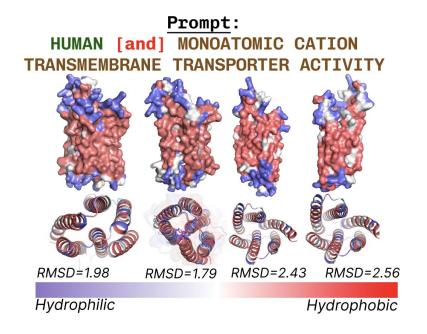
...despite these key residues not being adjacent in the sequence.

RMSD: **2.25Å** Seq. ld.: **24.3**% Sampled

7RTG (Crystal Structure of the Human Adenosine

Deaminase 1)

Transmembrane proteins exhibit expected hydrophobicity patterns



Hydrophobic residues are found at the core, as expected.

Thanks!

Berkeley Amy X. Lu Wilson Yan Pieter Abbeel

Microsoft Research Kevin Yang

Prescient Design Sai Pooja Mahajan Sarah Robinson Simon Kelow Vladimir Gligorijevic Kyunghyun Cho Richard Bonneau Nathan C. Frey

